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Abstract

A linear quantitative structure—activity relationship (QSAR) model is presented for modeling and predicting the inhibition of CXCR3 re-
ceptor. The model was produced by using the multiple linear regression (MLR) technique on a database that consists of 32 recently discovered
4-N-aryl-[1,4] diazepane ureas. The key conclusion of this study is that *k, ChiInf8, Chilnf0, AtomCompTotal and ClogP affect significantly the
inhibition of CXCR3 receptor by diazepane ureas. The selected physicochemical descriptors serve as a first guideline for the design of novel and

potent antagonists of CXCR3.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Novel medicines are typically developed using a trial and
error approach which is costly and time-consuming. The appli-
cation of quantitative structure—activity relationship (QSAR)
methodologies to this problem has the potential to decrease
substantially the time and effort required to discover new med-
icines or improve current ones in terms of their efficacy [1,2].
QSAR technology employs statistical methods to derive quan-
titative mathematical relationships linking chemical structure
and biological activity [3—8].

Chemokines play a pivotal role in inflammatory and im-
mune responses [9]. Recent reports indicate that there is a sig-
nificant interest for the identification of small-molecule
antagonists of CXCR3 [10,11]. 4-N-Aryl-[1,4] diazepane
ureas were found to constitute a promising series of functional
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antagonists of CXCR3 that could be developed into new ther-
apeutic agents for the treatment of inflammatory disorders
such us rheumatoid arthritis, inflammatory bowel disease,
multiple sclerosis and diabetes [12].

In the past, several attempts have been made to build QSAR
models in the general field of chemokine antagonists such as
CCRS [13,14], CXCR2 [15] and CXCR4 [16]. After a system-
atic literature search [17], we are confident that this paper
presents the first QSAR study concerning small-molecule an-
tagonists of CXCR3.

In particular, a series of 4-N-aryl-[1,4] diazepane ureas [12],
recently discovered CXCR3 receptor antagonists, were studied
in this work. Sixty-two physicochemical and topological de-
scriptors were examined in terms of their efficacy to determine
and predict the biological activity of the investigated derivatives.
The descriptors were calculated using Topix [18] and Chem3D
[19]. Among them, the most statistically significant descriptors
were selected using the elimination selection-stepwise regres-
sion (ES-SWR) variable selection method. The result of this
study was the development of a new linear QSAR model con-
taining five variables. The proposed methodology was validated
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using several strategies: cross-validation, Y-randomization and
external validation using division of the entire data set into train-
ing and test sets. Furthermore, the domain of applicability which
indicates the area of reliable predictions was defined.

2. Materials and methods
2.1. Data set

In this QSAR study, biological and chemical data from 32 di-
azepane ureas were used, which have been presented in the work
of Cole et al. [12] (Table 1). In order to model and predict
the biological effect of the specific compounds as functional

Table 1
Data set and model predictions using Eq. (15)

antagonists of the chemokine receptor CXCR3, 62 physicochem-
ical constants, topological and structural descriptors (Table 2)
were considered as possible input candidates to the model.
All the descriptors were calculated using Chem3D and Topix.
Before the calculation of the descriptors, the structures were fully
optimized using CS Mechanics and more specifically MM2 force
fields and the truncated-Newton—Raphson optimizer, which
provide a balance between speed and accuracy [19].

2.2. Separation into training and validation sets

The separation of the data set into training and validation
sets was performed according to the popular Kennard and

NH NH
R1
N Nf( J(
K// N/\
a
Id R, Ar R, log (1/1Cs0)° Training data® log (1/ICs) Validation data® log (1/1Csg)  Leverages
(observed) (predicted); R?= 0.82;RiOO =0.71 (predicted) R[erd =0.75 (limit = 0.60)
la 2,4-Cl,Ph Ph — 1.15 0.93 — 0.19
2a" 2,4-Cl,Ph 2-Cl Ph — 0.15 - 0.17 0.19
3a 2,4-Cl,Ph 3-Cl Ph — 1.22 0.93 — 0.14
4a 2,4-Cl,Ph 3-MeO Ph — 0.77 0.83 - 0.12
Sa 2,4-Cl,Ph 3-CN Ph — 1.10 0.96 — 0.29
6a 2,4-Cl,Ph 2-F Ph — 0.23 0.12 — 0.20
7a* 2,4-Cl,Ph 3-F Ph — 1.22 - 0.80 0.07
8a 2,4-Cl,Ph 4-F Ph — 0.70 0.95 - 0.13
9a 2,4-Cl,Ph 3,4-F, Ph — 0.54 0.39 — 0.23
10a 2,4-Cl,Ph 3,5-F, Ph — 0.62 0.66 - 0.21
11a 2,4-Cl,Ph 2-Thiophene  — 0.89 0.56 — 0.20
12a 2,4-Cl,Ph 4-Pyridyl — 0.60 0.52 — 0.39
13a 2,4-Cl,Ph 3-Thiophene  — 0.31 0.56 — 0.20
14a®  2,4-Cl,Ph 2-Furan — 0.19 - 0.47 0.19
15a 2-Cl Ph Et 3-Cl Ph — 0.72 0.42 — 0.11
16a 3-Cl Ph Et 3-Cl Ph — 0.52 0.57 — 0.12
17a® 4-Cl Ph Et 3-Cl Ph — 0.92 - 0.73 0.09
18a 2-F Ph Et 3-Cl Ph — 0.47 0.29 — 0.09
19a 3-F Ph Et 3-Cl Ph — 0.47 0.44 — 0.15
20a 4-F Ph Et 3-Cl Ph — 0.49 0.60 — 0.13
21a Ph Et 3-Cl Ph - 0.29 0.61 - 0.57
22a cPr Ph Et 3-Cl Ph — 0.62 0.31 — 0.27
23a 3,4-(CH30),PhEt  3-Cl Ph — 0.38 0.50 — 0.50
24a Bn 3-Cl Ph — —0.10 0.16 — 0.24
25a® 4-Cl Bn 3-Cl Ph — 0.60 - 0.53 0.13
26a pr 3-Cl Ph — —0.33 —-0.29 — 0.45
27a cPr Me 3-Cl Ph — —0.33 —0.29 - 0.34
28b* — — —NH"Pr 1.22 - 1.26 0.19
29 - - —NHPr 122 1.16 - 0.22
30b — — —NH"Bu  1.30 1.51 — 0.35
31b - - —NHMe 0.10 0.53 - 0.19
32b*  — — —NMe, 0.05 0.42 0.37

# Validation set.
° ICso in uM.
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Table 2

Physicochemical constants, topological and structural descriptors

D Description Notation D Description Notation
1 Molar refractivity MR 2 Diameter Diam

3 Partition coefficient (octanol—water) ClogP 4 Molecular topological index TIndx

5 Principal moment of inertia Z PMIZ 6 Number of rotatable bonds NRBo

7 Principal moment of inertia Y PMIY 8 Polar surface area PSAr

9 Principal moment of inertia X PMIX 10 Radius Rad

11 Connolly accessible area SAS 12 Shape attribute ShpA

13 Connolly molecular area MS 14 Shape coefficient ShpC

15 Total energy TotE 16 Sum of valence degrees SVDe

17 LUMO energy LUMO 18 Total connectivity TCon

19 HOMO energy HOMO 20 Total valence connectivity TVCon
21 Balaban index BlIndx 22 Wiener index Windx

23 Cluster count CIsC 24 Randic 0 Chi0

25 Randic 1 Chil 26 Randic 2 Chi2

27 Randic 3 Chi3 28 Randic 4 Chi4

29 Randic information 0 Chilnf0 30 Randic information 1 Chilnf1
31 Randic information 2 Chilnf2 32 Randic information 3 Chilnf3
33 Randic information 4 Chilnf4 34 Kier—Hall 0 Ki0

35 Randic Mod ChiMod 36 Xul Xul

37 Xu2 Xu2 38 Xu3 Xu3

39 Balaban topological Topol 40 Topological radius TopoRad
41 Topological diameter TopoDia 42 Number of clusters NClusters
43 Number of rings NRings 44 Wiener Dim Wiener Dim
45 Bertz Bertz 46 AtomCompMean AtomCompMean
47 AtomCompTot AtomCompTot 48 Zagrebl Zagrebl
49 Zagreb2 Zagreb2 50 Quadratic Quadr

51 ScHultz ScHultz 52 Kappal %k

53 Kappa3 3k 54 Kappa2 2k

55 Wiener distance WienerDistCode 56 Wiener information InfWiener
57 DistEqMean DistEqMean 58 DistEqTotal DistEqTotal
59 InfMagnitDistTot InfMagnitDistTot 60 Polarity Polarity
61 Gordon Gordon 62 Randic information 8 Chilnf8

Stones algorithm [20]. The algorithm starts by finding two
samples that are farthest apart from each other on the basis
of the input variables in terms of some metric, e.g. the Euclid-
ean distance. These two samples are removed from the origi-
nal data set and placed into the calibration data set. This
procedure is repeated until the desired number of samples
has been reached in the validation data set. A commonly
used ratio of training to validation objects, which is also adop-
ted in this work, is 80%:20% [21]. The advantages of this al-
gorithm are that the calibration samples map the measured
region of the input variable space completely with respect to
the induced metric and that the test samples all fall inside
the measured region. The Kennard and Stones algorithm has
been applied with great success in many recent QSAR studies
[22—27] and it has been highlighted as one of the best ways to
build training and test sets [28].

2.3. Multiple linear regression (MLR) model
development-variable selection

The first objective was to determine the optimum set of var-
iables that produces the most significant linear QSAR models
linking and interpreting the chemical structure of the small
molecules with their functional activity. ES-SWR algorithm
was used on the training data set to select the most appropriate
descriptors. ES-SWR is a popular stepwise technique [29] that

combines the advantages of both Forward Selection (FS-SWR)
and Backward Elimination (BE-SWR). Forward Selection is
computationally efficient for the generation of nested subsets
of variables. On the other hand Backward Selection eliminates
the most appropriate variable, so that the remaining variables
perform best [30].

2.4. Cross-validation technique

Cross-validation is a popular technique used to explore the
predictive ability of statistical models. Assuming that a training
data set consisting of n available compounds, is available,
a number of modified data sets are created by deleting in
each case one or a small group (leave-some-out) of objects
[29]. For each data set, an input—output model is developed,
based on the utilized modeling technique. The model is eval-
uated by measuring its accuracy in predicting the responses of
the remaining data (the ones that have not been utilized in the
development of the model). In particular, the leave-one-out
(LOO) and the leave-five-out (L50) procedures were utilized
in this study, which produce a number of models, by deleting
one or five objects, respectively, from the training set. The
maximum number of models produced by the LOO procedure
is equal to the number of available examples n, while for the
L50 procedure the maximum number of models is equal to
n!/5!(n — 5)!. Prediction error sum of squares (PRESS) is
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a standard index to measure the accuracy of a modeling
method using the LOO cross-validation technique [29]. Based
on the PRESS statistic and the summation of squares of devi-
ations of the experimental values from their mean (SSY), the
squared correlation coefficient of predictions using the LOO
method R, the standard error of predictions (SDEP) and
the Sprgss statistic can be easily calculated. The formulae
used to calculate the aforementioned statistics are presented
below:

2
i (yi B yi,Loo)

PRESS
R o=1— =1-— (1)
v S5Y S O =)’
SDEP — . /PRESS )
n
PRESS
SPRESS = m (3)

where y is the averaged value of the dependent variable for
the training set, and y;, yir00, i = 1,...,n are the measured
and predicted values of the dependent variable over the avail-
able training set. The squared correlation coefficients for the
L50 cross-validation method R? 5, can be calculated in a simi-
lar manner. In particular, Eq. (1) is used to compute R},
where the summations run over the predictions of all models
that are produced by deleting five objects from the training set.

2.5. Quality of fit and predictive ability of a QSAR model

The first indication of the success on a QSAR model is to
measure the quality of fit on the available training data. The
most common objective criteria [29] used for this purpose
are the squared correlation coefficient R2, the root mean
squared (RMS) error statistic and the F-value, and, which
are defined next:

n ~\2
R2 =1— Zi:](yf_yi>

4
S =) @

Do —yi)z

RMS =
(n—k-1)

(5)

(R*/k) ©)
(1-’)/(n—k—-1))

In the above equations, £ is the number of independent vari-
ables in the model and y;, i = 1, ..., n are the values calculated
by the QSAR model for the dependent variable. We should
note here that y; is the value calculated by the QSAR model
for the dependent variable corresponding to object i when
this compound has been included in the training data set,
whereas y; 100 is the prediction of the model that has not uti-
lized compound i throughout the model development
procedure.

F =

According to Tropsha et al. [31] the predictive ability of
a QSAR model should be tested on an external set of data
that has not been taken into account during the process of de-
veloping the model. In particular, the following statistical in-
dices have been proposed [31,32] to assess the predictive
power of QSAR models, besides the popular squared correla-

. . 2 .
tion coefficient Ry, 4:

2
R2 1 Zln::t (y[ B 5’[) (7)
S i — V)

ntest  ~ 2
Z,:] Yiy;

k= ntest ~
Zi;ity i

(8)

2

ol SE6o0)
o)

1
In the above equation ntest is the number of compounds
that constitute the validation data set, yi, is the averaged value
of the dependent variable for the training set, y;, y, i =
1, ..., ntest are the measured values and the QSAR model pre-
dictions of the dependent variable over the available validation
set and y is the average over all 3, i = 1, ..., ntest.

Tropsha et al. [31,32] considered a QSAR model to be pre-
dictive, if the following conditions are satisfied:

wherey® =ky;, i=1,...,ntest (9)

R, >05 (10)
R > 0.6 (11)
(Roa 2)
pred o
~— <01 (12)
R}%red
085<k<1.15 (13)

2.6. Defining model applicability domain

In order for a QSAR model to be used for screening new
compounds, its domain of application [31,30] must be defined
and predictions for only those compounds that fall into this do-
main may be considered reliable. Extent of extrapolation [32]
is one simple approach to define the applicability of the do-
main. It is based on the calculation of the leverage h; [32]
for each chemical, where the QSAR model is used to predict
its activity:
hi = xT (X"X)x; (14)

In Eq. (14) x; is the descriptor-row vector of the query com-
pound and X is the k x n matrix containing the k descriptor
values for each one of the n training compounds. A leverage
value greater than 3k/n is considered large. It means that the

predicted response is the result of a substantial extrapolation
of the model and may not be reliable.
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2.7. Y-randomization test

This technique ensures the robustness of a QSAR model
[33]. The dependent variable vector is randomly shuffled and
a new QSAR model is developed using the original indepen-
dent variable matrix [23,34—36]. The new QSAR models (af-
ter several repetitions) are expected to have low R* and Rioo
values. If the opposite happens then an acceptable QSAR
model cannot be obtained for the specific modeling method
and data.

3. Results and discussion

First, the data set of 32 derivatives was partitioned into
a training set of 25 compounds, and a validation set of 7 com-
pounds according to the Kennard and Stones algorithm [20]
using a 80%:20% ratio as mentioned before [21]. The valida-
tion examples are represented by table footnote “a” in Table 1.
The algorithm was applied on the complete database consist-
ing of all 62 available descriptors (please see Table 2). The
validation data were not involved by any means in the process
of selecting the most appropriate descriptors or in the develop-
ment of the QSAR model. They were considered as a com-
pletely unknown external set of data, which was used only
to test the accuracy of the produced model. The MLR
QSAR model was thus developed by applying the ES-SWR
algorithm on the set of training data. The result was the fol-
lowing five-variable equation:

log(1/1Csp) =3.99 —2.58 Chilnf0 —2.35ChiInf8 — 8.85 x 10>
AtomCompTot+7.78 x 107"’k +1.94x 10" ClogP ~ (15)

R*=0.82 RMS=0.21 F=1694 R;,,=0.71 SDEP
=0.23 SPRESS =027 n=25

Table 3 presents the correlation matrix, where it is clear that
the five selected descriptors are not highly correlated. Another
important observation is that the ratio of the objects in the
training set to the number of descriptors is 5:1, which is the
case in many QSAR [37].

The five input variables in the QSAR model are measured
in different units of measurements and the respective coeffi-
cients are of different orders of magnitude. In order to examine
the importance of each descriptor and answer the question
which of the independent variables have a greater effect on
the dependent variable in the multiple regression analysis,
the standardized regression coefficients were also calculated.

Table 3
Correlation matrix for the five selected descriptors
Chilnf0  Chilnf8§  AtomCompTot  °k CLogP
Chilnf0 1
Chilnf8 —0.12 1
AtomCompTot  —0.10 0.16 1
Kappa3 0.21 0.34 0.71 1
ClogP 0.32 0.19 0.25 066 1

This calculation is performed by applying the multiple regres-
sion methodology on the standardized values of the indepen-
dent and dependent variables, i.e. on the values that are
obtained after subtracting the mean and dividing by the stan-
dard deviation for each variable [29]. The standardized regres-
sion coefficients, then, represent the change in a dependent
variable that results from a change of one standard deviation
in an independent variable. The standardized regression coef-
ficients are presented in the following QSAR model:

log(1/ICsp) = —0.25 ChiInf0 — 0.50 ChiInf8
—0.31 AtomCompTot + 0.93 *k + 0.34 ClogP
(16)

It is clear that the standardized regression coefficients for
all input descriptors are of the same scale. We can conclude
that all descriptors are significant and are of similar impor-
tance for the investigated activity.

The model was quite stable to the inclusion—exclusion of
compounds measured by the LOO and L50 cross-validation
procedures. This is indicated by the following statistics:

R, =0.71

Rs =0.69

R]%oo and Riso are calculated using only the 25 training ex-
amples. Calculation of the Rfoo statistic was performed using
all 25 models that are produced by excluding one compound
each time from the training examples, while calculation of
the R}, statistic was based on 1000 random exclusions of
five-member groups of examples.

The model (Eq. (15)) also passed Tropsha’s [31,32] recom-
mended tests for predictive ability (Eq. (10—13)):

R =0.72>05

ext

R, =0.75>0.6

(Rér“‘ Ri) ~030<0.1
R;red . .
k=105=1

The model was further validated by applying the Y-random-
ization test. In particular, 10 random shuffles of the Y-vector
gave R? and R} values in the ranges of 0.1—0.30 and
0.05—0.25, respectively. The low R* and R}, values that
were obtained show that the good results in our original model
are not due to a chance correlation or structural dependency of
the training set.

Remark: according to some researchers [33], in each cycle
of the Y-test, the entire variable selection procedure should be
carried out on the scrambled data. This modified Y-randomiza-
tion test was also performed in our model. The obtained R*
and Rioo values were lower than 0.22 for all random shuffles
of the Y-vector that were examined.
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The above results illustrate that the linear MLR technique
combined with a successful variable selection procedure is
adequate to generate a successful QSAR model for modeling
and predicting the functional antagonist of CXCR3 by 4-N-
aryl-[1,4] diazepane ureas.

It needs to be emphasized, however, that no matter how ro-
bust, significant and validated a QSAR model may be, it can-
not be expected to predict reliably the modeled activity for the
entire universe of chemicals [31,32]. The domain of applica-
bility of the model was defined using the extent of extrapola-
tion method [27,36]. According to this method, we consider as
reliable only the predictions of the compounds, whose lever-
ages lie within the domain of applicability. In Table 1 all lever-
ages for the training and test sets are presented. The warning
leverage limit is 0.60 and as it can be concluded from the le-
verage values in Table 1, the predictions of the QSAR model
for all the compounds (both the training and test sets) are con-
sidered reliable.

The chemical meaning of the five descriptors used in the
produced QSAR model is briefly described next.

Kier shape descriptors (kappa indices) derived from the
counts of atoms and bonds depict a molecule as being related
to the extremes of linear and maximally branched structures.
Kappa indices encode information such as cyclicity, spatial
density, symmetry and degree of centralization separation in
branching. [35]. 3k is the third order shape attribute which is
described by the counts of three contiguous bonds *P. For third
order attribute, 3Pmax is the three-bond paths in the twin star
structure and 3Pmin is the number of three-bond paths in the
linear graph (Fig. 1).

The equation for calculating the *k index is as follows:

3,43 3
k=4 Pmazx Poin (17)
CPi)
Information indices (ChinfO, Chinf8 and AtomCompTot)
encode information on the adjacency and distance of atoms
and the atomic composition in the molecular structure [29].
Topological information indices (ChinfO, Chinf8) are graph
theoretical invariants that view the molecular graph as a source
of different probability distributions to which the information
theory is applied [29]. These indices have several advantages
such as unique representation of the compound and high dis-
criminating power (isomer discrimination). In a recent work,
topological information descriptors were used with great suc-
cess [39]. Information connectivity (ChinfO, Chinf8) indices
are based on the partition of the edges in the graph according
to the equivalence and the magnitudes of their edge connectiv-
ity values [29,38,40].

K A

Twin star Linear

Fig. 1. Graphs of *P,., and *P .

Let a given system / having n elements be regarded accord-

ing to a certain equivalence relation, into k equivalence classes
N . .. k
with cardinalities n; where n = ), n;.

The information content of a system / with n elements is
defined by the following equation (Eq. (18)), where the binary
logarithm is used for measuring the information contents in
bits.

k

1:1110g2n—2n,~10g2 n; (18)

i=1

Total information content on atomic composition Atom-
CompTot (Ipc) [29] is calculated from the complete molecular
formula, hydrogen included, using the following equation:

Inc = A"log, A" = A, log, A, (19)
8

where A" is the total number of atoms (hydrogen included) and
A, is the number of equal-type atoms in the gth equivalence
class.

Lipophilicity is known to be important for absorption, per-
meability, and in vivo distribution of organic compounds [41]
and has been used as a physicochemical in QSAR studies with
great success [42,43].

According to the produced QSAR model (Eq. (15)) high
values of the Kier shape descriptor 3 (*k) and lipophilicity
(ClogP) contribute positively to the activity. Thus, an improve-
ment in the activity is expected by designing small molecules
that include the fragments depicted in Fig. 2, which encode in-
formation about the branching of acyclic structures. *k en-
codes structural features related to the central positioning of
branching in a molecule. Moreover, the introduction of lipo-
philicity groups into diazepane urea’s core will also affect
the activity positively.

On the other hand, the information indices (ChinfO, Chinf8
and AtomCompTot), which encode information about the ad-
jacency and distance of atoms and the atomic composition in
the molecular structure [29], contribute negatively to the activ-
ity. The topological information indices (ChilnfO and Chilnf8)
measure the lack of homogeneity or the diversity of a molecu-
lar structure, and thus, they receive higher values for rather
asymmetric structures [29]. Due to the negative contribution
on the activity under study, we need to design compounds,
for which these descriptors receive low values (i.e. design mol-
ecules with high levels of homogeneity). AtomCompTot is an
information index [29] of the elemental composition of the
molecule that takes into account the molecular diversity in
terms of different atom types. In order to design molecules

AR X Ko

3k=1.991 3k=4.480 3k=9.143

Fig. 2. *k values and corresponding shapes.
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with low values for this descriptor, the proposed structures
should not contain many different atom types.

The proposed method, due to the high predictive ability
[31], and simplicity [44,45] could be a useful aid to the costly
and time-consuming experiments for determining the CXCR3
functional antagonism effect of the diazepane ureas. A virtual
screening procedure [46,47] could be based on the proposed
QSAR model. The design of novel active molecules by the in-
sertion, deletion or modification of substituents on different
sites of the molecule and at different positions could be guided
by the proposed model [4,14,27] .The method can also be used
to screen existing databases or virtual combinations in order to
identify derivatives with desired activity. In this case, the ap-
plicability domain will serve as a valuable tool to filter out
“dissimilar” combinations.

4. Conclusion

The successful results of this study led to the conclusion
that activity of small-molecule antagonists of CXCR3 can be
successfully modeled with physicochemical constants and
structural descriptors. The validation procedures (cross-valida-
tion, separation of data into independent training and valida-
tion sets, Y-randomization) illustrated the accuracy and
robustness of the produced QSAR model not only by calculat-
ing its fitness on sets of training data, but also by testing the
predictive ability of the model. The molecular descriptors
used in QSAR encode information about the structure, branch-
ing, electronic effects, chains and rings of the modules and
thus implicitly account for cooperative effects between func-
tional groups. The proposed QSAR model aims at helping
the researchers to design novel chemistry driven molecules
with desired biological activity.
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