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Abstract This paper presents the results of an optimiza-

tion study on biaryl piperidine and 4-amino-2-biarylurea

MCH1 receptor antagonists, which was accomplished by

using quantitative-structure activity relationships (QSARs),

classification and virtual screening techniques. First, a

linear QSAR model was developed using Multiple Linear

Regression (MLR) Analysis, while the Elimination Selec-

tion-Stepwise Regression (ES-SWR) method was adopted

for selecting the most suitable input variables. The pre-

dictive activity of the model was evaluated using an

external validation set and the Y-randomization technique.

Based on the selected descriptors, the Support Vector

Machines (SVM) classification technique was utilized to

classify data into two categories: ‘‘actives’’ or ‘‘non-ac-

tives’’. Several attempts were made to optimize the scaf-

fold of most potent compounds by inducing various

structural modifications. Potential derivatives with im-

proved activities were identified, as they were classified

‘‘actives’’ by the SVM classifier. Their activities were

estimated using the produced MLR model. A detailed

analysis on the model applicability domain defined the

compounds, whose estimations can be accepted with con-

fidence.

Keywords MCH1R � QSAR � Classification � SVM �
Virtual screening

Introduction

Melanin-concentrating hormone (MCH) is a cyclic nona-

decapeptide which is expressed in the brain of all verte-

brates. It has been demonstrated that MCH is involved in

feeding and body weight regulation. MCH stimulates food

intake in rodents and chronic administration leads to in-

creased body weight. Animals that lack the gene encoding

MCH receptor are hypophagic, lean and maintain elevated

metabolic rates [1–3].

Two G-protein coupled receptors (GPCRs) have been

identified for MCH, namely MCH1R and MCH2R. MCH1R

is present in rodents and high mammalian species while

MCH2R is expressed only in ferrets, dogs, rhesus monkeys

and humans. The pharmacological role of MCH2R in

metabolic homeostasis is still undefined whereas the critical

role of MCH1R in the regulation of food intake and energy

homeostasis has been extensively studied [4–6].

MCH1R has been identified as a key target in MCH

regulation, as small molecule antagonists of MCH1R have

demonstrated activity in vivo. MCH1R antagonists are

potentially interesting agents for treatment of metabolic or

obesity-related disorders. This fact has prompted different

research groups to design and synthesize MCH1R antag-

onists which demonstrate in vivo efficiency in the therapy

of obesity [7–9]. Alternative techniques could help to de-

crease the number of animals sacrificed during in vivo
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testing. In this sense QSAR, virtual screening and pattern

recognition could be very useful and promising method-

ologies. To the best of our knowledge, these techniques

have never been attempted so far in the general field of

MCH1R. It is thus of particular interest to investigate this

possibility.

In this paper we show that QSAR modeling, classifica-

tion and virtual screening can contribute greatly to the

modeling, design and optimization of MCH1R antagonists.

The first major result is the development of a QSAR model

involving seven descriptors that is able to predict suc-

cessfully MCH1R binding affinity. The model was gener-

ated using a database consisting of a series of 63 MCH1

receptor antagonists including biaryl piperidine- and

4-amino-2-biarylurea-based derivatives [10, 11]. About 69

physicochemical and topological descriptors were exam-

ined in terms of their efficacy to determine and predict the

activity of the investigated derivatives. The effects of

various structural modifications on biological activity were

investigated next, within a classification pattern. In par-

ticular, the popular SVM classification methodology was

utilized to afford novel active patterns. Biological activities

of novel structures were estimated using the new QSAR

model, while the detection of its domain of applicability

defined the compounds whose estimations can be accepted

with confidence.

Materials and methods

Data set

The database consists of 63 recently discovered biaryl

piperidine and 4-amino-2-biarylbutylureas (Tables 1–3)

[10, 11]. In order to model and predict the binding affinity of

MCH receptor antagonists, 69 physicochemical constants,

topological and structural descriptors (Table 4) were con-

sidered as possible input candidates to the model. Before the

calculation of the descriptors, all structures were fully opti-

mized using CS Mechanics and more specifically MM2 force

fields and the Truncated-Newton-Raphson optimizer, which

provide a balance between speed and accuracy (Chemoffice

Manual). Before calculating the HOMO and LUMO Ener-

gies (eV) all the structures were additionally fully optimized

using the AM1 basis set. All the descriptors were calculated

using ChemSar and Topix [12, 13].

Separation into a training and a validation set

The separation of the dataset into training and validation

sets was performed according to the popular Kennard and

Stones algorithm [14]. The algorithm starts by finding two

samples that are the farthest apart from each other on the

basis of the input variables in terms of some metric, e.g.,

Table 1 Binding biological data of the 1-[4-(1,4¢-bipiperidin-1¢-yl)-2-(3,4-dichlorophenyl)butyl]-3-arylurea derivatives. Training and test data

N

H
N

H
N

R2

O

Cl
Cl

N

ID R2 Ki (nM) observed Log (1/Ki) observed Training data log (1/Ki) predicted Test data log (1/Ki) predicted

1b 3,5-Cl2C6H3 135 –2.1303 –3.7673

2b 3,4-Cl2C6H3 300 –2.4771 –4.1723

3b 3,4-F2C6H3 240 –2.3802 –3.0638

4b 3-Cl-4-FC6H3 100 –2.0000 –3.2225

5 C6H5 18,500 –4.2672 –3.9305

6 3-MeOC6H4 11,000 –4.0414 –3.4531

7b 3-MeC6H4 6,800 –3.8325 –4.1118

8b 3-ClC6H4 1,641 –3.2151 –3.7187

9 3-CF3C6H4 205 –2.3118 –3.4331

10 4-CF3C6H4 1,080 –3.0334 –3.7417

11 2-CF3C6H4 22,500 –4.3522 –3.7048

12 3,5-(CF3)2C6H3 1,223 –3.0874 –2.9427

b Compound included in the test set
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the Euclidean distance. These two samples are removed

from the original data set and placed into the calibration

data set. This procedure is repeated until the desired

number of samples has been reached in the calibration set.

The advantages of this algorithm are that the calibration

samples map the measured region of the input variable

space completely with respect to the induced metric and

that the test samples all fall inside the measured region.

According to Tropsha [15] and Wu [16], the Kennard and

Stones algorithm is one of the best ways to build training

and test sets.

MLR model development-variable selection

Our first objective was to determine the best variables

which produce the most significant linear QSAR models

Table 2 Binding biological data of 1-[4-amino-2-(biaryl-4-yl)butyl]-3-arylurea derivatives. Training and test data

NR2
3

H
N

O

H
N

R2

Ar

ID Ar R2 NR2
3 Ki (nM)

observed

Log (1/Ki)

observed

Training data log (1/Ki)

predicted

Test data log (1/Ki)

predicted

13b C6H5 3,5-Cl2C6H3 cyclo-

Pentylamino

50 –1.6990 –2.3385

14b 3-ClC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

26 –1.4150 –2.0376

15 2-ClC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

130 –2.1140 –2.0740

16 4-ClC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

280 –2.4472 –2.2969

17b 3-FC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

37 –1.5682 –1.4960

18 3-CF3OC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

20 –1.3010 –0.5212

19 3-NCC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

3 –0.4771 –1.2844

20b 4-NCC6H4 3,5-Cl2C6H3 cyclo-

Pentylamino

46 –1.6628 –1.2995

21b 3-Pyridyl 3,5-Cl2C6H3 cyclo-

Pentylamino

24 –1.3802 –1.6171

22b 4-Pyridyl 3,5-Cl2C6H3 cyclo-

Pentylamino

122 –2.0864 –2.1144

23b 3-NCC6H4 3,5-Cl2C6H3 Methylamino 2.6 –0.4150 –0.5162

24b 3-NCC6H4 3,5-Cl2C6H3 Dimethylamino 4.7 –0.6721 –0.1203

25b 3-NCC6H4 3,5-Cl2C6H3 Ethylamino 4.3 –0.6335 –0.2554

26 3-NCC6H4 3,5-Cl2C6H3 Isopropylamino 5.6 –0.7482 0.0417

27 3-NCC6H4 3,5-Cl2C6H3 Piperidin-1-yl 5.4 –0.7324 –0.8475

28 3-NCC6H4 C6H5 Dimethylamino 2.4 –0.3802 –0.9114

29 3-NCC6H4 3-ClC6H4 Dimethylamino 1.1 –0.04140 –0.4782

30b 3-NCC6H4 4-ClC6H4 Dimethylamino 9.2 –0.9638 –0.7859

31b 3-NCC6H4 3-FC6H4 Dimethylamino 1.2 –0.0792 –0.3362

32b 3-NCC6H4 4-FC6H4 Dimethylamino 7.4 –0.8692 –0.6100

33b 3-NCC6H4 3-Cl-4-FC6H3 Dimethylamino 0.98 0.0088 0.1711

34b 3-NCC6H4 3,4-F2C6H3 Dimethylamino 0.84 0.0757 0.2678

35 3-NCC6H4 3,5-F2C6H3 Dimethylamino 0.88 0.0555 0.1702

b Compound included in the test set
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linking the structure of compounds with their binding

affinity. The ES-SWR algorithm was used on the training

data set to select the most appropriate descriptors. ES-SWR

is a popular stepwise technique [17] that combines Forward

Selection (FS-SWR) and Backward Elimination (BE-

SWR).

Model validation

The accuracy of the proposed MLR model was illustrated

using validation through an external test set and Y-ran-

domization. The leave-one-out and leave-five-out cross-

validation procedures were used to illustrate the robustness

Table 3 Binding biological data of aryl and biaryl piperidine analogs. Training and test data

N

H
N

X

R1

O n

R2

R3

ID R1 R2X(O)n R3 Ki (nM)

observed

Log (1/Ki)

observed

Training data log (1/Ki)

predicted

Test data log (1/Ki)

predicted

36 3-Pyridyl 3,5-Cl2C6H3NHCO H 39 –1.5911 –1.4857

37b 3-Pyridyl 3,5-Cl2C6H3NHCO MeSO2 2.2 –0.3424 –0.4954

38 3-Pyridyl 3,5-Cl2C6H3NHCO Me 3.1 –0.4914 –0.9034

39 3-Pyridyl 3,5-Cl2C6H3NHCO Me2NSO2 84 –1.9243 –1.8360

40 Me 3,5-Cl2C6H3NHCO Me 300 –2.4771 –2.1551

41 5-Indolyl 3,5-Cl2C6H3NHCO Me 1,188 –3.0748 –2.7598

42 3-Cl-C6H4 3,5-Cl2C6H3NHCO Me 2.6 –0.4150 –1.3040

43 3-AcHN-

C6H4

3,5-Cl2C6H3NHCO Me 2.1 –0.3222 –0.8970

44b 3-OHN-

C6H4

3,5-Cl2C6H3NHCO Me 5.5 –0.7404 –0.7806

45b 3-NCC6H4 3,5-Cl2C6H3NHCO Me 1.4 –0.1461 –0.6108

46 3-NCC6H4 3,5-Cl2C6H3NHCO Et 2.6 –0.4150 –0.5641

47 3-NCC6H4 3,5-Cl2C6H3NHCO n-Pr 0.31 0.5086 –0.2618

48 3-NCC6H4 3,5-Cl2C6H3NHCO n-Bu 11 –1.0414 –0.1373

49b 3-NCC6H4 3,5-Cl2C6H3NHCO MeOCH2CH2 0.41 0.3872 –0.0616

50b 3-NCC6H4 3,5-Cl2C6H3NHCO i-Pr 0.45 0.3468 0.3092

51 3-NCC6H4 3,5-Cl2C6H3NHCO sec-Bu 13 –1.1139 –0.0678

52b 3-NCC6H4 3,5-Cl2C6H3NHCO cyclo-Propylmethyl 0.17 0.7696 –0.2959

53 3-NCC6H4 3,5-Cl2C6H3NHCO cyclo-Butyl 11 –1.0414 –1.1280

54 3-NCC6H4 3,5-Cl2C6H3NHCO cyclo-Pentyl 0.63 0.2006 –0.6877

55 3-NCC6H4 3,5-Cl2C6H3NHCO cyclo-Hexyl 1.2 –0.0792 –0.5842

56b 3-NCC6H4 C6H5NHCO Me 2.2 –0.3424 –1.2445

57 3-NCC6H4 3-CF3-4-

ClC6H3NHCO

Me 0.98 0.0088 –0.5199

58 3-NCC6H4 3,4-F2C6H3NHCO Me 1.4 –0.1461 –0.2917

59 3-NCC6H4 3-NCC6H4NHCO Me 1.5 –0.1761 –0.7080

60 3-NCC6H4 2,5-Cl2C6H3NHCO Me 140 –2.1461 –0.8839

61b 3-NCC6H4 3,5-Cl2C6H3CH2CO Me 164 –2.2148 –1.9125

62 3-NCC6H4 3,5-Cl2C6H3CO Me 155 –2.1903 –1.1466

63 3-NCC6H4 3,5-Cl2C6H3SO2 Me 281 –2.4487 –1.9255

b Compound included in the test set, * outlier
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of the MLR modeling technique in our particular QSAR

study.

Cross-validation test

Cross-validation is popular technique used to explore the

reliability of statistical models. Based on this technique, a

number of modified data sets are created by deleting in

each case one or a small group (leave-some-out) of objects.

For each data set, an input–output model is developed,

based on the utilized modeling technique. The model is

evaluated by measuring its accuracy in predicting the re-

sponses of the remaining data (the ones that have not been

utilized in the development of the model) [18].

Validation through the external validation set

According to Tropsha’ group [15, 19] a QSAR model is

considered predictive, if the following conditions are sat-

isfied:

Table 4 Calculated descriptors

ID Description Notation ID Description Notation

1 Molar Refractivity MR 2 Diameter Diam

3 Partition Coefficient (Octanol Water) ClogP 4 Molecular Topological Index TIndx

5 Principal Moment of Inertia Z PMIZ 6 Number of Rotatable Bonds NRBo

7 Principal Moment of Inertia Y PMIY 8 Polar Surface Area PSAr

9 Principal Moment of Inertia X PMIX 10 Radius Rad

11 LUMO Energy LUMO 12 Shape attribute ShpA

13 HOMO Energy HOMO 14 Shape coefficient ShpC

15 Balaban Index BIndx 16 Sum of Valence Degrees SVDe

17 Cluster Count ClsC 18 Total Connectivity TCon

19 Wiener Index WIndx 20 Total Valence Connectivity TVCon

21 DistEqTotal DistEqTotal 22 Randic 0 Chi0

23 Randic 1 Chi1 24 Randic 2 Chi2

25 Randic 3 Chi3 26 Randic 4 Chi4

27 Randic Information 0 ChiInf0 28 Randic Information 1 ChiInf1

29 Randic Information 2 ChiInf2 30 Randic Information 3 ChiInf3

31 Randic Information 4 ChiInf4 32 Molecular Weight MW

33 Randic Mod ChiMod 34 Xu1 Xu1

35 Xu2 Xu2 36 Xu3 Xu3

37 Balaban Topological TopoJ 38 Number of Branches NBranch

39 Number of Rings NRings 40 Wiener Dim Wiener Dim

41 Bertz Bertz 42 AtomCompMean AtomCompMean

43 AtomCompTot AtomCompTot 44 Zagreb1 Zagreb1

45 Zagreb2 Zagreb2 46 Kappa1 Kappa1

47 Kappa2 Kappa2 48 Kappa3 Kappa3

49 Wiener Distance WienerDistCode 50 Polarity Polarity

51 DistEqMean DistEqMean 52 Quadratic Quadr

53 InfMagnitDistTot InfMagnitDistTot 54 ScHultz ScHultz

55 Gordon Gordon 56 Kier-Hall 0 Ki0

57 Kier-Hall 1 Ki1 58 Kier-Hall 2 Ki2

59 Kier-Hall 3 Ki3 60 Kier-Hall 4 Ki4

61 Kier-Hall Information 0 KiInf0 62 Kier-Hall Information 1 KiInf1

63 Kier-Hall Information 2 KiInf2 64 Kier-Hall Information 3 KiInf3

65 Kier-Hall Information 4 KiInf4 66 Randic Cluster 3 ChiCl3

67 Randic Cluster 4 ChiCl4 68 Wiener Information InfWiener

69 Wiener Index WIndx
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R2
pred[0:6 ð1Þ

ðR2 � R2
oÞ

R2
or
ðR2 � R

02
o Þ

R2
is less than 0:1 ð2Þ

k or k0 is close to 1: ð3Þ

In Eqs. 2 and 3, R2 is the coefficient of determination

between experimental values and model prediction on the

training set. Mathematical definitions of R2
o, R

02
o , k and k¢

are based on regression of the observed activities against

predicted activities and the opposite (regression of the

predicted activities against observed activities). The defi-

nitions are presented clearly in [20] and are not repeated

here for brevity.

Y-randomization test

This technique ensures the robustness of a QSAR model

[15, 21]. The dependent variable vector (biological action)

is randomly shuffled and a new QSAR model is developed,

using the given modeling algorithm. The procedure is re-

peated several times and the new QSAR models are ex-

pected to have low R2 and Q2 values. If the opposite

happens then an acceptable QSAR model cannot be ob-

tained for the specific modeling method and data.

Defining model applicability domain

In order for a QSAR model to be used for screening new

compounds, its domain of application [15, 20] must be

defined and predictions for only those compounds that fall

into this domain may be considered reliable. Extent of

Extrapolation [15] is one simple approach to define the

applicability of the domain. It is based on the calculation of

the leverage hi [22] for each chemical, where the QSAR

model is used to predict its activity

hi ¼ xiðXT XÞ�1xT
i : ð4Þ

In Eq. 4 xi is the row vector containing the k model

parameters of the query compound and X is the n · k

matrix containing the k model parameters for each one of

the n training compounds. A leverage value greater than

3k/n is considered large. It means that the predicted re-

sponse is the result of a substantial extrapolation of the

model and may be not reliable.

Support vector machines

The Support Vector Machine (SVM) method is a new and

very promising supervised machine learning technique,

originally developed by Vapnik and co-workers while

working on Structural Risk Minimization [23–25]. The

SVM method is quite different from empirical risk mini-

mization algorithms and is gaining popularity due to the

many attractive features it possesses and its promising

empirical performance. SVM is a classification approach

that has been suggested as being particularly appropriate

for chemical applications. In particular, the popular Library

for Support Vector Machines (LIBSVM) [26] was utilized

in this work. A detailed presentation of the theory behind

the SVM technique can be found in several books and

tutorials [27]. Here we briefly summarize the main prin-

ciples of SVMs, when they are used for classification

purposes.

A typical application of the SVM technology in

chemoinformatics consists of defining two classes of

molecules, determining a set of descriptors that character-

ize each molecule and using the SVM algorithm to develop

a classification model. If we assume that a number of

training compounds have been classified using experi-

mental data into an active class or an inactive class and that

a set of significant descriptors has been calculated for each

training compound, the procedure for developing an SVM

classification model can be summarized as follows: every

molecule has its own image in the multidimensional space,

where each dimension corresponds to a different descrip-

tor. The coordinates of the image are obviously the values

of the various descriptors. The SVM model seeks to find an

optimal hyperplane that best separates the two sets of

classes corresponding to the active and non-active com-

pounds in the multidimensional space. There are numerous

hyperplanes that may separate the data in this manner. The

optimal hyperplane is the one which maximizes the mar-

gin, defined as the closest distance from any point to the

separating hyperplane. The points used to define the opti-

mal hyperplane are often a small fraction of the entire data

and, as such, they allow a SVM model to be less prone to

overtraining while maintaining an excellent degree of

generalizability. Thus, the produced SVM model can be

used to classify other than the training molecules as active

or inactive. The predicted class of a molecule that is not

included in the training set depends on which side of the

separating hyperplane the image of the molecule is located.

Results and discussion

First, the data set of 63 derivatives was partitioned into a

training set of 35 compounds, and a validation set of 28

compounds according to the Kennard and Stones [14]

algorithm. The algorithm was applied on the complete

database consisting of all 69 available descriptors. The

validation examples are marked with b in Tables 1–3. The

validation data were not involved by any means in the
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process of selecting the most appropriate descriptors or in

the development of the QSAR model. They were consid-

ered as a completely unknown external set of data, which

was used only to test the accuracy of the produced model.

The MLR QSAR model was thus developed by applying

the ES-SWR algorithm on the set of training data. The

result was the following 8-parameter (seven descriptors and

the intercept) equation:

logð1=KiÞ ¼ � 19:3 ðt - value : �4:68Þ
� 1:87 � LUMO ðt - value : �2:64Þ
þ 0:516 � CLogP ðt - value : 3:69Þ
þ 0:0253 � PSAr ðt - value : 1:81Þ
þ 2:85 � KiInf2 ðt - value : 2:78Þ
� 1:95 � Ki3 ðt - value : �6:40Þ
þ 0:142 � Xu3 ðt - value : 5:47Þ
� 3:99 � ChiCl4 ðt - value : �2:95Þ

ð5Þ

n = 35; R2 = 0.78; R2
adj ¼ 0:72; F = 13.72;

RMSE = 0.6256; Q2 = 0.65; SPRESS = 0.7959.

The above equation shows that the most significant de-

scriptors according to the ES-SWR algorithm are Lipo-

philicity (ClogP), LUMO energy, PSAr, Kier&Hall

information index order 2 (KiInf2), Kier&Hall index order

3 (Ki3), Xu3 index and Chicluster4 (ChiCl4). Table 5

presents the correlation matrix and the variance inflation

factors (VIF), for the seven descriptors. These statistics

indicate that the selected descriptors are not highly corre-

lated. The chemical meaning of the seven descriptors is

briefly described next.

Lipophilicity is known to be important for absorption,

permeability, and in vivo distribution of organic com-

pounds [28] and has been used as a physicochemical

descriptor in QSARs with great success. From the derived

QSAR equation we can conclude that lipophilic groups

favor the biological action under study.

Polar surface area (PSAr) is defined as the part of the

surface area of the module associated with oxygens,

nitrogens, sulfurs and the hydrogens bonded to any of these

atoms. PSAr has proven to be a very useful parameter for

QSAR studies [17].

LUMO energy in particular has been identified as being

of significant value to QSAR studies [17, 29]. Molecules

with low LUMO values are more able to accept electrons

than molecules with high LUMO energy values. The

LUMO energy value is increased with the presence of

electron donating groups (EDG) such us NMe2, NH2, NHEt

and OMe and decreased with the presence of electron

withdrawing groups (EWG) such as halogens. From the

derived QSAR equation we can conclude that EWGs favor

the biological action under study.

In addition to the aforementioned indices, four topo-

logical indices were found to significantly influence the

activity [17, 30]. Topological indices give information not

only about the atomic constitution of a compound but also

about the presence and character of chemical bonds by

which the atoms are connected to each other.

Equation 5 was used to predict the binding affinity for

the validation examples. The results are presented in the

last columns of Tables 1–3 and correspond to the following

statistics: R2
pred ¼ 0:83, RMSE = 0.6549. In Fig. 1, the

experimental vs. predicted values are plotted for both the

training and validation sets. The results illustrate that the

linear MLR technique combined with a successful variable

selection procedure are adequate to generate an efficient

QSAR model for predicting the binding affinity of different

compounds.

The proposed model (Eq. 5) passed all the tests related

to the predictive ability (Eqs. 1–3)

R2
pred ¼ 0:83[0:6

ðR2 � R
02
o Þ

R2
¼ �0:22\0:1; k0 ¼ 1:14:

For a more exhaustive testing of the model building

technique that was followed in this work, the LOO and

L5O cross-validation techniques were applied on the

training set of compounds. The L5O method was imple-

Table 5 Correlation matrix and VIF values for the seven selected descriptors

LUMO ClogP PSAr KiInf2 Ki3 Xu3 ChiCl4 VIF*

LUMO 1 1.4

ClogP –0.011 1 1.9

PSAr –0.442 –0.307 1 1.9

KiInf2 0.012 0.059 –0.210 1 4.4

Ki3 –0.095 0.441 –0.016 0.669 1 6.7

Xu3 0.184 0.344 0.272 0.206 0.706 1 4.0

ChiCl4 0.208 0.214 –0.080 0.566 0.507 0.478 1 2.3

*VIF less than 10 indicates that the model contains no multicollinearity
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mented by selecting randomly groups of five compounds

from the available training data. Each group was left out

and that group was predicted by the model developed from

the remaining observations. 3000 random groups of five

compounds were selected for the implementation of the

L5O cross-validation test. It should be emphasized that

the procedure for developing the QSAR models included

the selection of the best descriptors. Therefore, each time

one (LOO) or five (L5O) compounds were excluded from

the training set, the modeling procedure selected the best

descriptors and developed an MLR model based only on

the remaining observations. The excluded compounds were

not involved by any means in the development of the

model. It was important that the model was stable to the

inclusion–exclusion of compounds. The results produced

by the LOO (Q2 = 0.65) and the L5O (Q2
L5O ¼ 0:66)

cross-validation tests illustrated the validity of the model-

ing approach.

The model was further validated by applying the

Y-randomization. Several random shuffles of the Y vector

were performed and the low R2 and Q2 values that were

obtained show that the good results in our original model

are not due to a chance correlation or structural dependency

of the training set. It should be noted that for each random

permutation of the Y vector, the complete training proce-

dure was followed for developing the new QSAR model,

including the selection of the most appropriate descriptors.

The results of the Y-randomization test are presented in

Table 6.

The extrapolation method was applied to the compounds

that constitute the validation set. The leverages for all 28

compounds were computed (Table 7). All 28 compounds

in the test set fall inside the domain of the model (the

warning leverage limit is 3k/n 3*8/35 = 0.686).

After the pre-selection of the descriptors the next step

was to build the classification model by using SVM. The

SVM classification approach has been suggested as being

particularly appropriate for chemical applications and well-

suited for virtual screening purposes. A successful SVM

model is expected to efficiently discriminate between

Fig. 1 Predicted vs. experimental values for the training and test sets

Table 6 R2 and Q2 values after

several Y-randomization test
Iteration R2 Q2

1 0.28 0.00

2 0.08 0.00

3 0.36 0.25

4 0.13 0.05

5 0.47 0.23

6 0.07 0.00

7 0.35 0.17

8 0.37 0.24

9 0.35 0.09

10 0.30 0.23

Table 7 Leverages for the test

set

Warning leverage limit = 0.686

Compound Leverage

1 0.4167

2 0.3112

3 0.4059

4 0.4025

7 0.3897

8 0.4152

13 0.4847

14 0.4487

17 0.5390

20 0.3972

21 0.5416

22 0.5250

23 0.4962

24 0.5345

25 0.5074

30 0.5170

31 0.4842

32 0.4854

33 0.4386

34 0.4278

37 0.0635

44 0.6324

45 0.6295

49 0.5732

50 0.5127

52 0.5815

56 0.5249

61 0.4590
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important and unimportant features. For constructing the

SVM model, the LIBSVM package was used [26] after

scaling both the training and validation data in the range

[–1,+1]. The Kernel type that was adopted in the present

work was the Radial Basis Function (RBF). The first task is

the assignment of each compound to one class, namely

‘‘active’’ or ‘‘non-active’’ based on a cut-off value that

was set to 60 for binding affinity Ki. For classification

purposes, active compounds are assigned a +1 value

whereas non-active compounds are assigned a –1 value.

These classes are defined a priori by groups of objects in

the training set belonging to these classes. The cost

parameter C and the gamma parameter c in the kernel

function were optimized to achieve the best possible

discrimination between classes. The optimized values

obtained were C = 10 and c = 1. The predictive ability of

the model was tested on the validation set of compounds.

The total accuracy of the SVM model was 91%, meaning

that the model assigned the correct class to 91% of the

compounds. Accuracy for the training and validations sets

was 100 and 82%, respectively. The results for the vali-

dation set are listed in Table 8. The misclassified samples

(marked with an asterisk) are clearly indicated.

Our final objective was to be able to classify compounds

that are not involved in the training procedure. These

compounds were derived from virtual optimization of the

lead compounds by insertions, substitutions, and deletions

of pharmacophoric substituents of the main building block

scaffolds. More specifically, based on the produced SVM

classification model, a group of new derivatives, previously

not tested for the specific biological action, was subjected

to virtual screening. The aim was, starting from a primary

hit and using both pharmacophore-based and substructure-

based modifications to discover a structurally diverse set of

potent leads [31, 32].

A variety of modifications of the initial compounds were

introduced and the representative modifications that led to

‘‘active’’ compounds are shown in Tables 9–14. Biological

activities of the compounds characterized as ‘‘actives’’

were estimated using the developed MLR equation. The

activity values together with the leverages are shown in

Tables 9–14. More precisely, the last column in Tables 9–

14 shows the difference between the warning limit 0.686

and the leverage calculated for each compound. A negative

value means that the respective compound falls outside the

domain of applicability of the model. The initial study

focused on the substitution of the biaryl moiety and indi-

cated that the biphenyl analogs (id 1v–4v, bearing either 2�
or 3� alkylamine side chains while falling well within the

domain of applicability were not predicted to be signifi-

cantly active compounds. The fused analogs (id 5v–9v

however, gave good predicted activity but the most active

structures (id 7v, 9v) fell outside (or marginally inside) of

the applicability domain. The tetrahydroquinoline structure

6v was considered for further modification and the nitrogen

heterocyclic ring was converted to the isomeric tetrahy-

droisoquinolines (id 10v and 11v). Structure id 10v (pred.

1.2616, domain 0.2071) which gave improved predicted

activity and remained within the applicability domain was

further modified by investigating the nature of the N-sub-

stitution (id 12v–18v). Generally the addition of larger

branched alkyl chains helped improve the activity but

several structures fell outside or marginally inside of the

domain of applicability. This was in agreement with the

model which emphasizes the lipophilicity descriptor.

Interestingly, moving the alkyl groups from the ring

nitrogen to the neighboring peri position (id 19v–27v)

greatly improved the structures fit within the applicability

domain and structure id 25v bearing an iso-butyl sub-

stituent showed good activity (1.6211) well within the

domain (0.3642). Structure id 25v was therefore considered

for further modification. N-Alkylation (id 28v) greatly

improved the activity (3.7658) but the structure fell outside

Table 8 SVM classification

results for the test set

*Misclassified compound

Compound Class Predicted

class

1 –1 –1

2 –1 –1

3 –1 –1

4 –1 –1

7 –1 –1

8 –1 –1

13* +1 –1

14* +1 –1

17* +1 –1

20 +1 +1

21 +1 +1

22* –1 +1

23 +1 +1

24 +1 +1

25 +1 +1

30 +1 +1

31 +1 +1

32 +1 +1

33 +1 +1

34 +1 +1

37* +1 –1

44 +1 +1

45 +1 +1

49 +1 +1

50 +1 +1

52 +1 +1

56 +1 +1

61 –1 –1
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Table 9 Virtual screening results (id 1v–11v)

Id Structure Predicted activity Limit-leverage

1v

N

H
N

H
N

O

Cl

Cl

CN

–0.0632 0.5439

2v

N

H
N

H
N

O

Cl

Cl

CN

0.2263 0.4835

3v

HN

H
N

H
N

O

Cl

Cl

CN

–0.0044 0.4921

4v

H
N

H
N

O

Cl

Cl

CN

N

–0.6181 0.6390
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Table 9 continued

Id Structure Predicted activity Limit-leverage

5v

O

H
N

H
N

N

Cl

F

CN

1.0114 0.1900

6v

H
N

O

H
N

CN

F

Cl

N

1.3332 0.1817

7v

H
N

O

H
N

CN

F

Cl
N

2.3485 –0.0757

8v

H
N

O

H
N

CN

F

Cl

NH

0.9605 0.4548
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the applicability domain (–1.0082). Introducing a further

degree of unsaturation (id 29v) however, significantly im-

proved activity (2.3716) within the applicability domain

(0.2389). The model predicts that lipophilicity and LUMO

are important descriptors and as such structure id 29v was

further modified by introducing fluorine substituents on the

iso-butyl side chain (id 30v–32v). Structures id 31v and

32v were predicted to have very good activities (2.8676

and 2.6800, respectively) and were within the applicability

domain. The urea moiety of structure id 32v was modified

to afford N-methylurea, carbamate, carbonate or thiocar-

bamate structures (id 33v–37v) but this did not afford

structures with improved activity within the desired do-

main of applicability. The phenyl urea substituent of

structure id 29v was also investigated (id 38v–50v). The

3,4-difluorobenzene substitution pattern gave the best

activity comfortably within the applicability domain. The

phenyl substituent of the dihydroisoquinoline moiety of

this structure (id 44v) was then modified (id 51v–57v)

Structure id 51v showed excellent predicted activity

(3.1284) within the domain of applicability (0.1105) and

introduction of an additional fluorine on the iso-butyl group

(id 58v) forced the structure outside the acceptable domain.

In general it has been demonstrated that several potentially

active structures can be predicted via virtual screening

which fall within the models domain of applicability. The

introduction of branched alkyl chains and also the use of

fluorine substitution are in agreement with the descriptor

model which showed a preference for increased lipophi-

licity and a more negative LUMO energy. Compounds id

Table 9 continued

Id Structure Predicted activity Limit-leverage

9v

H
N

O

H
N

CN

F

Cl

N

2.3206 0.0318

10v

O

H
N

H
N NCl

F

CN

1.2616 0.2071

11v

O

H
N

H
NCl

F

CN

N

1.3288 0.1397

262 J Comput Aided Mol Des (2007) 21:251–267

123



31v, 32v, 33v, 47v, 51v, 53v are predicted to exhibit an

increased biological activity and simultaneously fall inside

the domain of applicability of the model.

Finally a cautionary note should be included dealing

with the biological activity scales. While the data from

the experimental and virtual studies has been recorded

with the same units it must be noted that the predicted

activities produced by the virtual model are significantly

higher. It would be truly remarkable if the model was

able to accurately predict such activities quantitatively but

this is unlikely. The synthesis and study of these com-

pounds would be required to truly validate the virtual

model and as such is a worthy pursuit but this is outside

the scope of this present paper. It must therefore be noted

that the virtual screening study acts only as an aid in

proposing structural modifications to assist ongoing SAR

studies. The high biological activities predicted are only

indicative of which structures should be targeted for

synthesis on the basis that they meet or approach the

optimal values for the chosen descriptors for the given

model.

Conclusion

In the present study seven descriptors (namely LUMO

energy, PSAr, ClogP and four topological descriptors: Ki3,

KiInf2, ChiCl4, Xu3) were found to be important for

describing biological activity of potent MCH receptor

antagonists. The seven-descriptor set contains electronic,

topological and physicochemical information about mole-

cules, and describes and models successfully the binding

affinity of these small molecules.

An SVM classifier was developed based on the partition

of the initial dataset into training and validation com-

pounds. The SVM model was then used to classify novel

compounds that were derived by inducing structural mod-

ification to the initial compounds of the database. Biolog-

ical activities of novel compounds were estimated by the

produced MLR model. The detailed validation procedure

that was followed (separation of the data into two inde-

pendent sets, cross-validation, Y-randomization) illustrated

the accuracy and robustness of the produced model not

only by calculating its fitness on the training data, but also

by testing its predicting ability. The applicability domain

served as a valuable tool to filter out ‘‘dissimilar’’ com-

pounds.

Due to its predictive ability, the proposed model could

be a useful aid to the costly and time consuming experi-

ments for determining binding affinity of the MCH

receptor antagonists.

Table 10 Modifications of 1,2,3,4-tetrahydroisoquinoline id 10v

H
N

O

H
NCl

F

N

CN

R2

R1

Id R1 R2 Predicted activity Limit-leverage

12v Et H 1.2009 0.2342

13v n-Pr H 1.4846 0.1507

14v i-Pr H 1.7995 –0.0442

15v c-Pr H 1.1890 0.1677

16v n-Bu H 1.7116 0.0121

17v i-Bu H 2.2567 –0.2531

18v s-Bu H 1.3205 0.0690

19v H Me 0.2551 0.5669

20v H Et 0.5929 0.5630

21v H n-Pr 1.1016 0.5126

22v H i-Pr 1.2560 0.4831

23v H c-Pr 0.5392 0.5088

24v H n-Bu 1.1302 0.4767

25v H i-Bu 1.6211 0.3642

26v H s-Bu 1.0449 0.4725

27v H t-Bu 0.6620 0.4373

Table 11 Modifications of compound id 25v

Id Structure Predicted

activity

Limit-

leverage

28v

N

H
N

H
N

R2

O

Cl
Cl

N

3.7658 –1.0082

29v

H
N

O

H
NCl

F

NH

CN

2.3716 0.2389
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Table 12 Modifications of the 1,2-dihydroisoquinoline id 29v (introduction of fluorine substituents and modification of the urea moiety)

Id Structure Predicted Activity limit-leverage

30v

H
N

O

H
NCl

F

NH

CN

CF3

1.8484 0.2434

31v

H
N

O

H
NCl

F

NH

CN

CH3

CH3

FF

2.8676 0.1321

32v

H
N

O

H
NCl

F

NH

CN

CH3

CH3

HF

2.6800 0.1784

33v

O

O

H
NCl

F

NH

CN

CH3

CH3

FF

2.8841 0.1338

34v

O

O

OCl

F

NH

CN

CH3

CH3

HF

2.9348 –0.0314

35v

O

O

H
NCl

F

NH

CN

CH3

CH3

HF

2.6045 0.2058
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Table 12 continued

Id Structure Predicted Activity limit-leverage

36v

S

O

H
NCl

F

NH

CN

CH3

CH3

HF

1.9578 0.1470

37v

Me
N

O

H
NCl

F

NH

CN

CH3

CH3

HF

3.0980 –0.3189

Table 13 Modifications of the 1,2-dihydroisoquinoline id 29v (variation of the urea phenyl substituents)

H
N

O

H
NR2

R3

NH

CN

R1

R4
R5

Id R1 R2 R3 R4 R5 Predicted activity Limit-leverage

38v H F Cl H H 2.3194 0.2490

39v H Cl Cl H H 1.4953 0.4141

40v Cl H Cl H H 1.6983 0.3908

41v F H Cl H H 2.2156 0.2723

42v F H F H H 2.1562 0.3046

43v Cl H F H H 2.0106 0.3211

44v H H F F H 2.3314 0.2970

45v F H H F H 2.1661 0.3023

46v H F H F H 2.2490 0.3463

47v F F H H H 2.4724 0.1615

48v F H H H F 2.3694 0.1587

49v F F H H F 3.7355 0.0225

50v F F F H H 2.8719 0.0081
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